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A	sub-population	of	energetic	particles	is	ubiquitous	in	
fusion	plasmas

2/13

Sources	of	energetic	particles:
• RF	heating
• neutral	beam	injection
• alpha	particles
• runaway	electrons

Those	energetic	particles	
create	an	energy-inverted	
distribution	that	drive	several	
instabilities,	most	notably	
Alfvénic modes.	Control	is	
necessary!	A	hierarchy	of	
models	is	available…

NSTX-U,	Princeton	Plasma	Physics	Laboratory
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Quasilinear	theory	is	a	reduced	approach	to	kinetic	
instabilities

3/13

In	a	regime	where	there	is	no	effective	particle	trapping	in	resonances,	the	kinetic	(Vlasov)	
description	of	phase	mixing	can	be	approximated	by	an	irreversible,	diffusive	process

For	quasilinear	theory	to	be	valid,	the	linear	mode	properties	(e.g.,	eigenstructure and	
resonance	condition)	should	not	change	in	time

Quasilinear	diffusion	theory	was	independently	proposed	by
A.	A.	Vedenov,	E.	P.	Velikhov,	and	R.	Z.	Sagdeev,	Sov.	Phys.	Usp.	4,	332	(1961).
W.	Drummond and	D.	Pines,	Nucl.	Fusion	Suppl.	2(Pt.	3),	1049	(1962).	
Later generalized to	action-angle	variables:
A.	N.	Kaufman,	Phys.	Fluids 15,	1063	(1972).	
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for the scattering case. Com-

parison with the above expressions for the calculated QL

growth rates imply that they are equal to the nonlinear

growth rate at all times for both collisional cases.

In conclusion, we have constructed a QL transport the-

ory from first principles that is able to account for the

excitation of an isolated resonance. The conventional QL

theory requires resonance overlapping to be obeyed, via

the Chirikov criterion Chirikov [23]. Near marginal sta-

bility, the stochasticity introduced by collisions or back-

ground turbulence ensures that the particle orbital mo-

tion loses coherence in order to justify a di�usive ap-

proach. Besides, in the present work, the shape of the

resonance function emerges naturally in the calculation

which, therefore, removes a major arbitrariness of the

framework proposed in Ref. 10, and does so by means

of a systematic derivation that does not require any as-

sumption other than near marginality.

It has been demonstrated that near marginal stability,

the systematic QL theory we developed replicates the

identical growth rates and saturation levels as predicted

by a significantly more complex nonlinear kinetic theory

based on solving a time delayed integro-di�erential equa-

tion. The demonstration did not rely on any assumption

for the specific form of the distribution. We note that

our demonstration assumed that the overall system is

governed by a QL equation that self-consistently embod-

ies collisional e�ects via a resonance function that was

previously determined from first principles ((6) and (8)).

However, a QL theory, being a reduced framework, does

not contain all the relevant information as to the detailed

angle-resolved distribution function. Hence, in work to

be shown elsewhere, we have also developed an alterna-

tive formal approach, that produces additional structure

as part of the perturbed distribution function that is not

described by the coarse-grained QL theory. However, we

have shown that this additional structure does not alter

the nonlinear corrections to the field amplitude, predicted

by the QL theory we report here. A description of the

results of this more general approach will be given in a

later more detailed paper.

This work was supported by the US Department of

Energy under contract DE-AC02-09CH11466.
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2.6.2 Phase space averaging

The average over phase space is taken along the surfaces over which the resonance

condition is satisfied, for different poloidal bounce harmonics. The phase space volume

elements are weighted in accord to their relative contribution to the overall growth rate.

Specifically, we evaluate
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� (⌦j) is the contribution to the growth rate, �L, from a given

phase space location that satifies ⌦j (E , P', µ) = 0. In the present study, the phase-space

averages are taken over several harmonics of a given mode. This averaging technique was

previously used to predict the TAE amplitude saturation in TFTR experiments [71].

2.7 Comparison with simplified bump-on-tail prediction

as evaluated by NOVA

In this thesis, we show that a previous approach that attempted to simplify the needed

input that the theory requires [9] is insightful but limited for making accurate predictions

of experimental scenarios. Here we employ a generalized formulation and show that its pre-

dictions are in accordance with observations. This analysis reveals that micro-turbulence,

even while producing no observable effect on the beam ion transport, provides the vital

mechanism in determining which non-linear regime is more likely for a mode as well as the

mode transition from one regime to the other, as parameters of an experiment change in
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stability, as is the case in Ref. 6 and 10, the results above

are readily applicable upon the mapping of the variables

Ï and � into kx and v/k, where x is the spatial variable,

v is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)

ˆf

ˆt
+ �

ˆf

ˆÏ
+ Re

!
Ê

2
b e

iÏ
" ˆf

ˆ�
= C [f, F0] , (1)

where the form for the collisional operator C[f, F0] is

taken as either ‹K (F0 ≠ f), which are the creation

and annihilation terms of the Krook model [14] or

‹
3
scattˆ

2
(f ≠ F0) /ˆ�

2
, which is the di�usive scattering

operator [15], and ‹K and ‹scatt are the e�ective colli-

sion frequencies. Êb is the nonlinear trapping (bounce)

frequency at a given resonance, which is proportional

to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form

f (Ï, �, t) = F0 (�) + f0 (�, t) +

Œq
n=1

!
fn (�, t) e

inÏ
+ c.c.

"

with the ordering |F Õ
0| ∫

---f Õ(1)
1

--- ∫
---f Õ(2)

0

--- ,

---f Õ(2)
2

--- [16].

The prime denotes the derivative with respect to � while

the superscript denotes the order in the wave amplitude

(equivalently, in orders of Ê
2
b ). Then the fn satisfy

ˆfn

ˆt + in�fn +
1
2

!
Ê

2
b f
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n≠1 + Ê

2ú
b f

Õ
n+1

"
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=
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3
scattf
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n
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê
2
b /‹

2
K ,

Eq. (2) gives

f1 =
Ê

2
b F

Õ
0

2 (i� + ‹K)
. (3)

Noting that the reality constraint implies f≠1 = f
ú
1 , to

second order in Ê
2
b /‹

2
K , (2) gives

ˆf0
ˆt

+
1

2

!
Ê

2
b [f

Õ
1]

ú
+ Ê

2ú
b f

Õ
1
"

= ≠‹Kf0. (4)

Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation

ˆf (�, t)

ˆt
≠ fi

2

ˆ

ˆ�

5--Ê2
b

--2 R (�)
ˆf (�, t)

ˆ�

6
= C [f, F0] (5)

where, for the Krook case, R (�) is

RK(�) =
1

fi‹K (1 + �2/‹
2
K)

. (6)

A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
2
b /‹

2
scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
iF

Õ
0Ê

2
b (t)

2‹scatt

⁄ 0

≠Œ
dse

i �
‹scatt

s
e

s3/3
. (7)

Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1

fi‹scatt

⁄ Œ

0
ds cos

3
�s

‹scatt

4
e

≠s3/3
. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and for the

growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� .

Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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Historically,	resonance	overlap	(Chirikov criterion)	has	
been	invoked	to	justify	the	applicability	of	QL	theory

Then, in the resonant region, ∂v f ~ f êvtr µ E
é -1ê2

. This makes the third term in the Vlasov equation,

∂ f

∂ t
+ v
∂ f

∂ x
+

e E
é

m

∂ f

∂v
= 0,

scale as E
é
∂v f ~ E

é 1ê2
. Clearly, this term then cannot be balanced by others if f ªOHEé 0L +OHEé 1L. Hence the linear

approximation becomes inapplicable, and the problem generally becomes more complicated. Surprisingly, though,
it can become simpler if one deals multiple waves instead of a single wave. We explain this in two steps, namely,
as follows.

ü Interaction of two modes. Chirikov criterion
First, consider two waves and the phase space structure that they produce:

Out[34]=

x

u1

u2

u

Suppose that the difference in the phase velocities, °vp1 - vp2•, is large compared to the island widths. Then, the
velocity perturbations  for  most  passing  particles  do  not  deviate  much  from the  linear  superposition  of  such
perturbations caused by the two waves individually. Also, particles trapped by the first wave are not significantly
affected by the second wave, and particles trapped by the second wave are not significantly affected by the first
wave. Each wave then propagates largely in the same way as if the other wave did not exist.

But the situation changes drastically when the islands overlap, i.e., the so-called Chirikov criterion is satisfied,

vtr1 + vtr2 t °vp2 - vp1•.

In this case, most trapped particles will not “belong” to a particular wave anymore but will be “shared” by the two
waves. Such particles will wonder randomly, loosely speaking, within the velocity interval v2 - vtr2 d v d v1 + vtr1,
while the dynamics outside this interval will remain regular.

ü Interaction of multiple modes
Suppose now that there are not two but Np 1 waves, such that the width of the stochastic region in the velocity

space  is  N vtr =OHEé 0L.  (Here  vtr  is  the  characteristic  trapping  width.)  Such  broad-band  spectra  are  naturally
formed, for instance, through bump-on-tail instabilities, with phase velocities in the range where f0 ' HvL > 0.
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• Intrinsic	stochastic	diffusion:	due	to	
interaction	with	broad	spectrum

• Extrinsic	stochasticity:	by	collisions	
inducing	randomization	of	phase	

In	this	case,	most	trapped	particles	will	not	“belong”	to	a	
particular	wave	anymore	but	will	be	“shared”	by	the	two	
waves.	

The	end	goal	of	this	talk	is	to	show	that	in	the	presence	of	collisions,	a	QL	theory	can	be	
formulated	from	first	principles	near	marginal	stability,	even	for	a	single	resonance.	
Interesting	properties	emerge:	

(i) it	recovers	the	saturation	level	predicted	by	nonlinear	theory	
(ii) the	resonance	function	can	be	analytically	calculated 3/13

sech
....

f (',⌦, t)

f (⌦, t) = hf (',⌦, t)i'

@f

@t
� @

@⌦
D

@f

@⌦
= C [f, F0]

!b,1 + !b,2 & |⌦1 � ⌦2|

⌦1

⌦2

!b

1

sech
....

f (',⌦, t)

f (⌦, t) = hf (',⌦, t)i'

@f

@t
� @

@⌦
D

@f

@⌦
= C [f, F0]

!b,1 + !b,2 & |⌦1 � ⌦2|

⌦1

⌦2

!b

1

is	the	bounce	(trapping)	frequency
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Critical	gradient	behavior	in	DIII-D	suggests	that	quasilinear	
modeling	is	a	viable	modeling	tool	for	fast	ion	relaxation

• Fully	nonlinear	modeling	of	fast	ion	
interaction	with	Alfvénic modes	in	a	
realistic	tokamak	is	numerically	
expensive

• Simulations	need	to	cope	with	the	
simultaneous	excitation	of	multiple	
unstable Alfvénic instabilities,	with	
and	without	overlap

DIII-D	critical	gradient	experiments

-stiff	transport	and	resilient	fast	ion	profiles	as	beam	power	varies

-stochastic	fast	ion	transport	(mediated	by	overlapping	resonances)	
gives	credence	in	using	a	quasilinear	approach

C.	Collins	et	al,	PRL	2016
5/13

the trapped banana orbit is ∼40 cm, more than half of the
plasma minor radius. At the end of the current ramp, the
equilibrium (bulk) FIDA density profiles appear
“clamped,” with peak density no longer increasing despite
increased beam power [Fig. 5(c)].
The fast-ion losses at the modulated beam frequency also

suddenly increase above a threshold in driving beam power.
In addition, the fast-ion losses exhibit larger, more frequent
transient bursts as beam power increases, appearing as a
growing tail of the probability distribution function of the
intermittency (Fig. 6). Here, intermittency is defined as the
raw data divided by the smoothed data (sampled at 1 MHz
and boxcar averaged with 0.1 ms window). While the total
AE power decreases in time through the current ramp, the
types of AEs evolve [as can be seen in the spectra in
Figs. 1(a) and 1(b)], with strong, simultaneous RSAEs and
TAEs generally occurring from 700 to 800 ms, correspond-
ing to a peak in the intermittent activity. In theory, if many
overlapping modes are present, particle diffusion can occur
over a larger portion of phase space, leading to an
avalanche of global redistribution and losses [21]. While
an absolute calibration of losses to assess the degree of wall
heating in the existing experiment is not available, it is
conceivable that the combination of AE-induced diffusive
and intermittent losses could be unacceptable in future

burning plasma devices, and further characterization of the
operative regime for this loss mechanism is needed.
For predictive studies of AE-induced transport, a fully

self-consistent numerical treatment would evolve the AE
structures, amplitudes, and frequencies with the fast-ion
distribution function and equilibrium plasma profiles.
Although recent progress has been impressive [22,23], this
approach is very expensive computationally. As an alter-
native, reduced models aim to make computation efficient
by avoiding detailed nonlinear calculations of wave-particle
resonances and saturated mode amplitudes, but accuracy
must be evaluated through experimental validation. While
the isotropic, fusion produced alpha particle distribution
function expected in the International Thermonuclear
Experimental Reactor (ITER) cannot be produced in
present-day devices where neutral beams drive anisotropic
fast ions, it is predicted that many small-amplitude AEs will
similarly be present in ITER [24]. The measurements of
diffusive and intermittent transport presented in this Letter
can be used to quantitatively validate AE critical-gradient
“stiff” transport models, giving greater confidence when
applying the numerical tool to ITER.
In recent work, the relaxed fast-ion pressure profile is

calculated by assuming that AE-induced fast-ion transport
is stiff above either the AE linear stability threshold [7] or a
microturbulent threshold [25]. The experimental results

FIG. 5. (a) Radial profile of ECE power spectra at a single time
slice. RSAEs occur at the minimum in q. (b) Fast-ion transport
measured with FIDA is localized to the midcore radii as beam
power increases. (c) At increasingly high beam powers, FIDA
density profiles at t ¼ 1035 ms are unchanged.

FIG. 6. (a) Spikes in the FILD data increase with beam power
quantified in (b) as a skewed tail in the event distribution function
of the raw signal divided by the 0.1 ms running average.
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comparisons show only slight differences from the results
reported here. In general, ~Γ can be a time-dependent
quantity as fast ions diffuse in space and energy. Here,
we take h∇ · ~Γi to be the time average of the half period
when the beam is either on or off, as indicated in Fig. 2(c).
In Fig. 3(a), the SSNPA diagnostic shows that transport

suddenly begins to increase above a threshold of Pthresh ¼
3.6" 0.5 MW beam power, while in Fig. 3(b), the neutron
emission indicates Pthresh ¼ 2.9" 0.4 MW. In order to
understand what sets the transport threshold, we use a
procedure similar to the one in Ref. [16] to examine the
interaction of the modulated population of particles with
the AEs excited in the experiment. The linear ideal
magnetohydrodynamic code NOVA [17] is used to compute
the eigenmode frequencies and structures for DIII-D
discharge no. 159243 at t ¼ 790 ms, which had 6.4 MW
of tangential beam injection. The amplitudes of eight
RSAEs and three TAEs are scaled to match experimental
values based on ECE temperature fluctuation measure-
ments for five discharges in the same power scan at similar
time slices when qmin ∼ 2.9 [18]. The TRANSP code [19]
calculates the classical particle distribution function of the
modulated beam. Next, the ORBIT algorithm described in
Ref. [20] is used to determine which portions of fast-ion
phase space have good Kolmogorov-Arnold-Moser (KAM)
surfaces and which orbits reside in islands and stochastic
regions formed by wave-particle resonances. Figure 4
shows the results of this analysis for E ¼ 70 keV particles
in the portion of phase space diagnosed by the SSNPA.
Here, μ is magnetic moment, B0 is the on-axis magnetic
field, Pζ is the canonical toroidal angular momentum,
and Ψw is the poloidal magnetic flux at the last closed

flux surface. At 3.7 MW, good KAM surfaces are preserved
throughout the region diagnosed by the SSNPA, so
negligible transport is expected. At 6.4 MW, nearly all
surfaces are destroyed, so large transport is expected.
These theoretical results are in good agreement with

experiment. In Fig. 3(a), the stochasticity, or fraction of
SSNPA phase space with broken surfaces after 15 toroidal
transits (4 μs), is plotted beside the experimental data. The
experimental threshold for stiff transport coincides with the
theoretical points, confirming that the onset of stochasticity
is responsible for the jump in transport. Additional obser-
vations support this conclusion. (1) The threshold for
appreciable transport is lower for diagnostics with broad
sensitivity in phase space [such as the neutrons in Fig. 3(b)]
than for diagnostics with narrow sensitivity (such as the
SSNPA). Stochastic orbits do exist in lower-power dis-
charges in some portions of phase space, so a diagnostic
like the neutron detector that encompasses the entire region
of phase space shown in Fig. 4 observes enhanced transport
at low-power levels. (2) A power scan using perpendicular
beams enhances the wave-particle resonances in the
trapped portion of phase space. Diagnostics that are
sensitive to trapped particles measure a lower-power thresh-
old for this perpendicular power scan, while diagnostics
that are sensitive to passing particles measure a lower-
power threshold in the tangential power scan.
The FIDA diagnostic provides profile measurements of

the copassing fast-ion population. Figure 5 shows that
transport of the modulated beam particles is localized to the
midcore radii, corresponding to the location of multiple
RSAEs. These observations are consistent with critical-
gradient behavior in that the modulated beam particles act
to perturb the driving gradient, and the particles are
consequently redistributed so that the gradient is main-
tained below the critical value for mode stability. The
measured divergence of flux is also nonzero near the
magnetic axis, which may be due to the sampling of a
portion of trapped fast ions whose large orbit size allows
interaction with midcore AEs. While the gyroradius
of a 70 keV fast ion near qmin is ∼2.3 cm, the width of

Fast-Ion Transport

FIG. 3. Time-averaged divergence of modulated flux, i.e.,
transport, inferred from the (a) SSNPA and (b) neutron emission
for the first half (triangles pointing up) and second half (triangles
pointing down) of the modulation period. Error bars are the
standard error of the time average over the half period. The onset
of transport corresponds to the theoretical level of stochasticity
[solid squares in (a)].

FIG. 4. ORBIT analysis shows that particle orbits in the indicated
SSNPA diagnostic region of sensitivity are stochastic in the
6.4 MW case but not stochastic in the 3.7 MW case.
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Early	development	of	broadened	quasilinear	theory	

• is	an	arbitrary	resonance	function	(usually	taken	as	in	flat-top	form)	with
• is	the	trapping	(bounce)	frequency	at	the	elliptic	point	(proportional	to	square	

root	of	mode	amplitude)
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The	line	broadening	model (																						):

trajectory. This should be advantageous in making large
scale parameter studies for designing fusion devices and pre-
dicting the tendencies of various discharge conditions. If
modes are destabilized, they can grow to the point of overlap
and might result in large scale transport of EPs.
Alternatively, they can saturate without overlapping and
result in local flattening of EP distribution with little or no
losses. If modes were to destabilize, the latter case is most
likely necessary for fusion and for protecting the first wall.
Therefore, the dynamics of the particle-mode system needs
to be resolved in the case of isolated as well as overlapping
modes case for which the KQL theory would be applicable.

The key to the LBQ model is to establish plausible
mechanisms to broaden the d function to a functional form
F of width DX. The parametric dependencies of the broad-
ening width are set to replicate the saturation amplitudes
found from analytic predictions7,14–17 and numerical simula-
tions.11,12 We assume the following for the general form of
the broadening of resonant singularity:

dðX" xÞ! F ðX" xÞ; (8)

where

F ðX" xÞ ¼ gðX" xÞ ifjX" xj < DX=2;
0 ifjX" xj > DX=2

!
(9)

such that
Ð

dXF ðX" xÞ ¼ 1, where g(X – x) can other-
wise be of any arbitrary form. In this article, a square well
g(X – x)¼ 1/DX is chosen since analytic analysis can be
made for this case and similar results are obtained from
other windows. Discussion on the effect of window shape
can be found in Ref. 18. The width of the broadening and its
dependency on the dynamical variables, discussed in Sec.
II C, is what dictates the resulting saturation levels and evo-
lution of the system and therefore is a principle element in
the development of this model.

It is justified to use the KQL diffusion equations, which
are intrinsically irreversible, when the particle motion is
randomized within timescales shorter than timescales for
particle trapping to take effect. There are two mechanisms19

to randomize particle motion, either intrinsically due to
Hamiltonian stochasticity20 resulting from phase-space
islands overlapping, or from extrinsic stochastic processes,
such as Coulomb collisions.21 When the modes are isolated,
the first condition cannot be met, but the existence of colli-
sions motivates the development of the LBQ model.

The form for the collision operator depends on the domi-
nant processes for the wave-particle problem being modeled.
For the example of energetic particles interacting with TAE
modes, the fast-ion velocities vf satisfies vi% vf% ve, where
vi and ve are the background ion and electron thermal veloc-
ities. In that limit, Coulomb collisions are a combination of
ion pitch-angle scattering and ion energy scattering, while
electron drag22,23 is neglected under the assumption that a
particle diffuses out of the resonance region faster than drag
could transport the particle through the resonance region.
The scattering is represented by a diffusive operator as inves-
tigated in Refs. 7, 8, and 23. In developing the model, the

collisions are included in the LBQ equations as a diffusive
term !3

eff @
2f=@X2, where !3

eff depends on the parameters of
the system.7

The self-consistent LBQ1D equations for an isolated
mode become

@f

@t
¼ p

2

@

@X
x4

bF
@f

@X
þ !3

eff

@2

@X2
ðf " f0Þ (10a)

d

dt
x4

b ¼ 2ðc " cdÞx4
b; (10b)

where growth rate, in the absence of other damping mecha-
nisms, is

c ¼ p
4

ð
dXF @f

@X
: (11)

C. Width of the broadening

The width of the broadening around X(J0) is modeled as
some combination of xb, !eff, and cL, which are the main
inverse time scales of interest. The broadening in X is
expected to be proportional to the separatrix width
DXsep¼

:
4xb since only the particles trapped or nearly

trapped in the wave undergo phase mixing. As for the de-
pendence on !eff, one notes that, for larger values of !eff, par-
ticles are redistributed at a faster rate in and out of the
separatrix of the trapping region. This would result in a
larger region of phase space affected by the resonance. This
is modeled by making the width also proportional to the
effective collisional rate: DX/ !eff.

In addition, we account for the instantaneous growth
rate. The diffusion coefficient, as derived in standard quasi-
linear theory where there is a slow linear growth rate c, is
found to be proportional to c/[c2þ (X – x)2]. Putting these
conditions together, the width in LBQ is chosen to have the
form of the weighted sum:

DX ¼ ð2rxbÞp þ ð2kð!eff þ jcjÞÞp
$ %1=p

(12)

which allows considerable flexibility for modeling the reso-
nant wave-particle interaction to reproduce analytically and
numerically expected results.

III. DETERMINING THE PARAMETRIC DEPENDENCIES

The parameters r, k, and p are calculated to model the
evolution and saturation of the mode to best fit the expected
behavior of isolated modes. k and r are chosen by using the
analytic results of the saturation levels in the two opposite
limits (cL – cd)/cL % 1 and (cL – cd)/cL' 1. However, in the
wide range in-between, there are no analytic expressions to
rely on. Instead, simulations are used to best fit the LBQ
results for the appropriate choice of p.

A. Perturbation theory

Perturbation theory is used to find the saturation levels
in the limits of near marginal stability7,12,15–17 where
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From the unperturbed Hamilton’s equation, a convenient

frequency-like variable which is a function of the relevant

action can be defined as Ï̇ = ˆH0 (J) /ˆJ © � (J) [? ? ],

where H0 is the unperturbed Hamiltonian. We note that,

in the case of a one-dimensional electrostatic bump-on-

tail instability, as is the case in Ref. 6 and 10, the results

above are readily applicable upon the mapping of the

variables Ï and � into kx and v/k, where x is the spatial

variable, v is the velocity and k is the wave vector. In the

study of instabilities in incompressible and homogeneous

2D critical layers in fluids [? ], the equivalent of Êb is

a variable that represents a stream function amplitude,

while ‹ is a parameter that represents the fluid viscos-

ity coe�cient and variables Ï and � represent distances

in latitude and longitude. In the study of the evolution

of a mode in a turbulent background under a geomet-

ric optics framework, with turbulent modes regarded as

quasi-particles, Ï and � are kx and v/k, Êb is mode am-

plitude, ‹ is twice the damping rate experienced by the

turbulent spectrum [? ].

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)

ˆf

ˆt
+ �

ˆf

ˆÏ
+ Re

!
Ê

2
b e

iÏ
" ˆf

ˆ�
= C [f, F0] , (1)

where the form for the collisional operator C[f, F0] is

taken as either ‹K (F0 ≠ f), which are the creation

and annihilation terms of the Krook model [? ] or

‹
3
scattˆ

2
(f ≠ F0) /ˆ�

2
, which is the di�usive scattering

operator [? ], and ‹K and ‹scatt are the e�ective colli-

sion frequencies. Êb is the nonlinear trapping (bounce)

frequency at a given resonance, which is proportional

to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form

f (Ï, �, t) = F0 (�) + f0 (�, t) +

Œq
n=1
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fn (�, t) e

inÏ
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with the ordering |F Õ
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2
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The prime denotes the derivative with respect to � while

the superscript denotes the order in the wave amplitude

(equivalently, in orders of Ê
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [? ]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê
2
b /‹

2
K ,

Eq. (2) gives

f1 =
Ê

2
b F

Õ
0

2 (i� + ‹K)
. (3)

Noting that the reality constraint implies f≠1 = f
ú
1 , to

second order in Ê
2
b /‹

2
K , (2) gives
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1]
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1
"

= ≠‹Kf0. (4)

Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation

ˆf (�, t)

ˆt
≠ fi

2

ˆ

ˆ�

5--Ê2
b

--2 R (�)
ˆf (�, t)

ˆ�

6
= C [f, F0] (5)

where, for the Krook case, R (�) is

RK(�) =
1

fi‹K (1 + �2/‹
2
K)

. (6)

A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
2
b /‹

2
scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
iF

Õ
0Ê

2
b (t)

2‹scatt

⁄ 0

≠Œ
dse

i �
‹scatt

s
e

s3/3
. (7)

Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1

fi‹scatt

⁄ Œ

0
ds cos

3
�s

‹scatt

4
e

≠s3/3
. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ R(�)d� = 1, expected for

functions that replace a delta function, is automatically

satisfied by both forms of the resonance function. For

a self-consistent description, the QL di�usion Eq. (5)

must be solved simultaneously with the Eq. for ampli-

tude evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and

for the growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)
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satisfied by both forms of the resonance function. For

a self-consistent description, the QL di�usion Eq. (5)

must be solved simultaneously with the Eq. for ampli-
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, and
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frequency-like variable which is a function of the relevant

action can be defined as Ï̇ = ˆH0 (J) /ˆJ © � (J) [? ? ],

where H0 is the unperturbed Hamiltonian. We note that,

in the case of a one-dimensional electrostatic bump-on-

tail instability, as is the case in Ref. 6 and 10, the results

above are readily applicable upon the mapping of the

variables Ï and � into kx and v/k, where x is the spatial

variable, v is the velocity and k is the wave vector. In the

study of instabilities in incompressible and homogeneous

2D critical layers in fluids [? ], the equivalent of Êb is

a variable that represents a stream function amplitude,

while ‹ is a parameter that represents the fluid viscos-

ity coe�cient and variables Ï and � represent distances

in latitude and longitude. In the study of the evolution

of a mode in a turbulent background under a geomet-

ric optics framework, with turbulent modes regarded as

quasi-particles, Ï and � are kx and v/k, Êb is mode am-

plitude, ‹ is twice the damping rate experienced by the

turbulent spectrum [? ].

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)
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a variable that represents a stream function amplitude,

while ‹ is a parameter that represents the fluid viscos-

ity coe�cient and variables Ï and � represent distances

in latitude and longitude. In the study of the evolution

of a mode in a turbulent background under a geomet-

ric optics framework, with turbulent modes regarded as

quasi-particles, Ï and � are kx and v/k, Êb is mode am-

plitude, ‹ is twice the damping rate experienced by the

turbulent spectrum [? ].

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-
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forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)

ˆf

ˆt
+ �

ˆf

ˆÏ
+ Re

!
Ê

2
b e

iÏ
" ˆf

ˆ�
= C [f, F0] , (1)

where the form for the collisional operator C[f, F0] is

taken as either ‹K (F0 ≠ f), which are the creation

and annihilation terms of the Krook model [? ] or

‹
3
scattˆ

2
(f ≠ F0) /ˆ�

2
, which is the di�usive scattering

operator [? ], and ‹K and ‹scatt are the e�ective colli-

sion frequencies. Êb is the nonlinear trapping (bounce)

frequency at a given resonance, which is proportional

to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form

f (Ï, �, t) = F0 (�) + f0 (�, t) +

Œq
n=1

!
fn (�, t) e

inÏ
+ c.c.

"

with the ordering |F Õ
0| ∫

---f Õ(1)
1

--- ∫
---f Õ(2)

0

--- ,

---f Õ(2)
2

--- [? ].

The prime denotes the derivative with respect to � while

the superscript denotes the order in the wave amplitude

(equivalently, in orders of Ê
2
b ). Then the fn satisfy

ˆfn

ˆt + in�fn +
1
2

!
Ê

2
b f

Õ
n≠1 + Ê

2ú
b f

Õ
n+1

"
=

=
)

≠‹Kfn, ‹
3
scattf

ÕÕ
n

* (2)

where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the
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ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the
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ground damping rate). In this case, the detailed time
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dynamics [? ]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the
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≠Œ R(�)d� = 1, expected for
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tude evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and

for the growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� . For

2

From the unperturbed Hamilton’s equation, a convenient

frequency-like variable which is a function of the relevant

action can be defined as Ï̇ = ˆH0 (J) /ˆJ © � (J) [? ? ],
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tail instability, as is the case in Ref. 6 and 10, the results

above are readily applicable upon the mapping of the

variables Ï and � into kx and v/k, where x is the spatial

variable, v is the velocity and k is the wave vector. In the
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2D critical layers in fluids [? ], the equivalent of Êb is

a variable that represents a stream function amplitude,

while ‹ is a parameter that represents the fluid viscos-

ity coe�cient and variables Ï and � represent distances
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of a mode in a turbulent background under a geomet-

ric optics framework, with turbulent modes regarded as

quasi-particles, Ï and � are kx and v/k, Êb is mode am-

plitude, ‹ is twice the damping rate experienced by the

turbulent spectrum [? ].

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines
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linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time
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can disregard the time derivative in (2). Therefore, the
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≠Œ R(�)d� = 1, expected for

functions that replace a delta function, is automatically

satisfied by both forms of the resonance function. For

a self-consistent description, the QL di�usion Eq. (5)

must be solved simultaneously with the Eq. for ampli-

tude evolution, d
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[? ]). Hence, Eq. (18) becomes

dA (·)

d·
= A (·) ≠ A (·)

8‹̂
3
K

⁄ ·

0
d·1e

≠‹̂K (·≠·1) |A (·1)|2 (19)

It is instructive to compare Eq. (19) with the cubic de-

lay equation that follows from near-thershold nonlinear

theory, rather than the QL case we derived. In the full

nonlinear case, it has been obtained (Ref. [? ])

dA(·)
d· = A(·) ≠ 1

2
s ·/2

0 d·1·
2
1 A (· ≠ ·1) ◊

◊
s ·≠2·1

0 d·2e
≠‹̂K (2·1+·2)

A (· ≠ ·1 ≠ ·2) A
ú

(· ≠ 2·1 ≠ ·2)

(20)

We have numerically simulated both Eq. (19) and Eq.

(20). As already indicated by Ref. [? ], Eq. (20) can ex-

hibit a behavior of blow-up in a finite time if ‹̂ . 2.5. We

have found that Eq. (19) is more robust in this regard,

with the blow up occurring only if ‹̂ . 0.15. Note that

in the derivation in our Letter, we explore the situation

in which the marginality implies ‹̂ ∫ 1. Therefore, the

breakdown of our QL theory only occurs for a region of

parameter space where it was not expected to be valid

anyway. Physically, small values of ‹̂ signal that the sys-

tem is not subject to enough stochasticity in order for a

di�usive description to be applicable (i.e., the resonant

particles remain in resonance for longer times and mem-

ory e�ects start being important).

” (�) æ R (�)

• The	broadening	of	resonances	is	a	ubiquitous	phenomenon	in	physics	(e.g.,	in	atomic	spectra)

• In	plasma	physics,	broadened	strong	turbulence	theories	for	dense	spectra	have	been	developed	
(e.g.,	Dupree,	Phys.	Fluids	1966);



The overlapping of resonances lead to losses due to 
global diffusion

• The resonance broadened quasilinear model is designed to address both 
regimes of isolated and overlapping resonances

– the	fast	ion	distribution	function	relaxes	while	self-consistently	evolving	the	amplitude	of	modes
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FIG. 3. Time evolution of resonance widths (shaded areas) for a 
multimode system where mode overlap does not occur. The time 
range of the graph is selected to coincide with that of Fig. 5. 
System evolved from €(v, t = 0) = 0 and W,(t = 0) values at  
thermal noise levels to give benign pulsations, with period of the 
order of that of the bursts in Fig. 2. 
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FIG. 4.  Particle distribution function as a function of time for 
the simulation shown in Fig. 3. The resonance locations are 
shaded. 
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FIG. 5. Time evolution of resonance widths for a multimode sys- 
tem where mode overlap leads to the domino effect. The curves, 
in different line styles, show the boundaries of individual reso- 
nances. System evolved from same initial conditions as those of 
Figs 3-4; y ~ I w  is 5% larger than in those figures. 
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FIG. 6. Evolution of nonalized wave momenta for the modes 
of Fig. 5. Modes located at  lower values of x are located further 
to the left side of the graph. Modes at higher values of x satu- 
rate at higher levels because they can absorb particle momentum 
from particles transported from lower x, as well as from particles 
originally within their resonance widths. 
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the simulation shown in Fig. 5. 

1666 NUCLEAR FUSION, Vol. 35, No. 12 (1995) 

BERK et al. 

2.5 

2 

3 L 1.5 

1 

0.5 

0 

IC 
0 200 400 600 800 1000 

,Yl t 
FIG. 2. Evolution of normalized bounce frequency of a single 
mode with source, sink and background dissipation present giving 
rise to a pulsating response. The parameters are given in the text. 

265 276 287 298 309 320 
7 L t  

FIG. 3. Time evolution of resonance widths (shaded areas) for a 
multimode system where mode overlap does not occur. The time 
range of the graph is selected to coincide with that of Fig. 5. 
System evolved from €(v, t = 0) = 0 and W,(t = 0) values at  
thermal noise levels to give benign pulsations, with period of the 
order of that of the bursts in Fig. 2. 

320.0 L 

FIG. 4.  Particle distribution function as a function of time for 
the simulation shown in Fig. 3. The resonance locations are 
shaded. 

I 
r( 

1 

0.8 

0.6 

0.4 

0.2 

~~ ~~~~~ 

265 276 287 298 309 320 

7 L  t 

FIG. 5. Time evolution of resonance widths for a multimode sys- 
tem where mode overlap leads to the domino effect. The curves, 
in different line styles, show the boundaries of individual reso- 
nances. System evolved from same initial conditions as those of 
Figs 3-4; y ~ I w  is 5% larger than in those figures. 

0 

E 

0.01 

0.001 

10'' 

280 285 290 295 300 305 310 

7Lt 
FIG. 6. Evolution of nonalized wave momenta for the modes 
of Fig. 5. Modes located at  lower values of x are located further 
to the left side of the graph. Modes at higher values of x satu- 
rate at higher levels because they can absorb particle momentum 
from particles transported from lower x, as well as from particles 
originally within their resonance widths. 

FIG. '7. Particle distribution function as a function of time for 
the simulation shown in Fig. 5. 

1666 NUCLEAR FUSION, Vol. 35, No. 12 (1995) 

H.	Berk,	B.	Breizman,	J.	Fitzpatrick,	and	H.	
Wong,	Nucl.	Fusion	35,	1661	(1995).	

7/13

ac
tio

n	
va
ria

bl
e

time	variable time	variable

without	overlap with	overlap



First-principle	analytical	determination	of	the	
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stability, as is the case in Ref. 6 and 10, the results above

are readily applicable upon the mapping of the variables

Ï and � into kx and v/k, where x is the spatial variable,

v is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)
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frequency at a given resonance, which is proportional
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.
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Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by
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Eq. (7) is then iterated in (2) to second order in
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude
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--Ê2
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--2
, and for the
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Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
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≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
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, and for the
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Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion

Start	with	the	kinetic	equation:

Periodicity	over	the	canonical	angle	allows	the	distribution	to	be	written	as	a	Fourier	series:

2
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is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines
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ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the
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history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
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a review covering broadening theories in strong turbu-
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note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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F0 (�) + f0 (�, t) and noting that by construction
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0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by
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A somewhat similar procedure can be employed for the
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f1 =
iF

Õ
0Ê

2
b (t)

2‹scatt

⁄ 0

≠Œ
dse

i �
‹scatt

s
e

s3/3
. (7)

Eq. (7) is then iterated in (2) to second order in

Ê
2
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2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for
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of Eq. (5), with
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and for the

growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� .

Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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stability, as is the case in Ref. 6 and 10, the results above

are readily applicable upon the mapping of the variables

Ï and � into kx and v/k, where x is the spatial variable,

v is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)
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, which is the di�usive scattering

operator [15], and ‹K and ‹scatt are the e�ective colli-
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.
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Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation
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where, for the Krook case, R (�) is
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A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
2
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2
scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
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Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1
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4
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and for the

growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� .

Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the
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of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion
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A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We
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Noting that the reality constraint implies f≠1 = fú
1 , to

second order in Ê2
b /‹2

K , (2) gives

ˆf0
ˆt

+
1

2
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Ê2
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1]

ú
+ Ê2ú

b f Õ
1
"

= ≠‹Kf0. (4)

Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation

ˆf (�, t)

ˆt
≠ fi

2

ˆ

ˆ�

5--Ê2
b

--2 R (�)
ˆf (�, t)

ˆ�

6
= C [f, F0] (5)

where, for the Krook case, R (�) is

RK(�) =
1

fi‹K (1 + �2/‹2
K)

. (6)

A somewhat similar procedure can be employed for the

scattering case. To first order in Ê2
b /‹2

scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
iF Õ

0Ê2
b (t)

2‹scatt

⁄ 0

≠Œ
dsei �

‹scatt
ses3/3. (7)

Eq. (7) is then iterated in (2) to second order in

Ê2
b /‹2

scatt. Again, using that ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|,
it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1

fi‹scatt

⁄ Œ

0
ds cos

3
�s

‹scatt

4
e≠s3/3. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and for the

growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� .

Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion

coe�cient in Eq. (5) is always positive. In Dupree’s

case, the assumed overlapping turbulent dense spectrum

ensures positivity over the entire phase-space domain.

To leading order near marginal instability, there

emerges the following higher order steady state distri-

bution functions (”f © f (�, t) ≠ F0 (�)) from Eq. (5).

For the Krook model, it has the form

”fK = ≠
--Ê2

b

--2

‹3
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ˆF0
ˆ�

�/‹K

(1 + �2/‹2
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2 (9)

while for the di�usive scattering model,
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⁄ Œ

0

ds
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4
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Fig. 1(b) shows the forms for the marginally unstable

”f . These forms can be useful for code verification akin

to studies reported in Ref. [22]. Fig. 1(b) is valid in

2
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to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê2
b /‹2

K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê2
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K ,

Eq. (2) gives
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Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation
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RK(�) =
1

fi‹K (1 + �2/‹2
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A somewhat similar procedure can be employed for the

scattering case. To first order in Ê2
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scatt, we integrate

Eq. (2) along the characteristics, which gives
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0Ê2
b (t)

2‹scatt

⁄ 0
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‹scatt
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Eq. (7) is then iterated in (2) to second order in
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scatt. Again, using that ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ
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it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1
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0
ds cos

3
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4
e≠s3/3. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2
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--2
/dt = 2 (“L (t) ≠ “d)
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, and for the

growth rate, “L (t) =
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4
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≠Œ d�R ˆf(�,t)
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Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion

coe�cient in Eq. (5) is always positive. In Dupree’s

case, the assumed overlapping turbulent dense spectrum

ensures positivity over the entire phase-space domain.

To leading order near marginal instability, there

emerges the following higher order steady state distri-

bution functions (”f © f (�, t) ≠ F0 (�)) from Eq. (5).

For the Krook model, it has the form

”fK = ≠
--Ê2

b

--2

‹3
K

ˆF0
ˆ�
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(1 + �2/‹2
K)

2 (9)

while for the di�usive scattering model,
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scatt

ˆF0
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0
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Fig. 1(b) shows the forms for the marginally unstable

”f . These forms can be useful for code verification akin

to studies reported in Ref. [22]. Fig. 1(b) is valid in

2

From the unperturbed Hamilton’s equation, a convenient

frequency-like variable which is a function of the relevant

action can be defined as Ï̇ = ˆH0 (J) /ˆJ © � (J) [? ? ],

where H0 is the unperturbed Hamiltonian. We note that,

in the case of a one-dimensional electrostatic bump-on-

tail instability, as is the case in Ref. 6 and 10, the results

above are readily applicable upon the mapping of the

variables Ï and � into kx and v/k, where x is the spatial

variable, v is the velocity and k is the wave vector. In the

study of instabilities in incompressible and homogeneous

2D critical layers in fluids [? ], the equivalent of Êb is

a variable that represents a stream function amplitude,

while ‹ is a parameter that represents the fluid viscos-

ity coe�cient and variables Ï and � represent distances

in latitude and longitude. In the study of the evolution

of a mode in a turbulent background under a geomet-

ric optics framework, with turbulent modes regarded as

quasi-particles, Ï and � are kx and v/k, Êb is mode am-

plitude, ‹ is twice the damping rate experienced by the

turbulent spectrum [? ].

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)

ˆf

ˆt
+ �

ˆf

ˆÏ
+ Re

!
Ê

2
b e

iÏ
" ˆf

ˆ�
= C [f, F0] , (1)

where the form for the collisional operator C[f, F0] is

taken as either ‹K (F0 ≠ f), which are the creation

and annihilation terms of the Krook model [? ] or

‹
3
scattˆ

2
(f ≠ F0) /ˆ�

2
, which is the di�usive scattering

operator [? ], and ‹K and ‹scatt are the e�ective colli-

sion frequencies. Êb is the nonlinear trapping (bounce)

frequency at a given resonance, which is proportional

to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form

f (Ï, �, t) = F0 (�) + f0 (�, t) +

Œq
n=1

!
fn (�, t) e

inÏ
+ c.c.

"

with the ordering |F Õ
0| ∫

---f Õ(1)
1

--- ∫
---f Õ(2)

0

--- ,

---f Õ(2)
2

--- [? ].

The prime denotes the derivative with respect to � while

the superscript denotes the order in the wave amplitude

(equivalently, in orders of Ê
2
b ). Then the fn satisfy

ˆfn

ˆt + in�fn +
1
2

!
Ê

2
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Õ
n≠1 + Ê

2ú
b f

Õ
n+1

"
=

=
)

≠‹Kfn, ‹
3
scattf

ÕÕ
n

* (2)

where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [? ]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê
2
b /‹

2
K ,

Eq. (2) gives

f1 =
Ê

2
b F

Õ
0

2 (i� + ‹K)
. (3)

Noting that the reality constraint implies f≠1 = f
ú
1 , to

second order in Ê
2
b /‹

2
K , (2) gives

ˆf0
ˆt

+
1

2

!
Ê

2
b [f

Õ
1]

ú
+ Ê

2ú
b f

Õ
1
"

= ≠‹Kf0. (4)

Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation

ˆf (�, t)

ˆt
≠ fi

2

ˆ

ˆ�

5--Ê2
b

--2 R (�)
ˆf (�, t)

ˆ�

6
= C [f, F0] (5)

where, for the Krook case, R (�) is

RK(�) =
1

fi‹K (1 + �2/‹
2
K)

. (6)

A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
2
b /‹

2
scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
iF

Õ
0Ê

2
b (t)

2‹scatt

⁄ 0

≠Œ
dse

i �
‹scatt

s
e

s3/3
. (7)

Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1

fi‹scatt

⁄ Œ

0
ds cos

3
�s

‹scatt

4
e

≠s3/3
. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ R(�)d� = 1, expected for

functions that replace a delta function, is automatically

satisfied by both forms of the resonance function. For

a self-consistent description, the QL di�usion Eq. (5)

must be solved simultaneously with the Eq. for ampli-

tude evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and

for the growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� . For

6

Ê
2
b (t)“

1/2
L0 / (“L,0 ≠ “d)

5/2
, ‹̂K = ‹K/ (“L,0 ≠ “d) and · =

(“L,0 ≠ “d) t (the same normalizations employed in Ref.

[? ]). Hence, Eq. (18) becomes

dA (·)

d·
= A (·) ≠ A (·)

8‹̂
3
K

⁄ ·

0
d·1e

≠‹̂K (·≠·1) |A (·1)|2 (19)

It is instructive to compare Eq. (19) with the cubic de-

lay equation that follows from near-thershold nonlinear

theory, rather than the QL case we derived. In the full

nonlinear case, it has been obtained (Ref. [? ])

dA(·)
d· = A(·) ≠ 1

2
s ·/2

0 d·1·
2
1 A (· ≠ ·1) ◊

◊
s ·≠2·1

0 d·2e
≠‹̂K (2·1+·2)

A (· ≠ ·1 ≠ ·2) A
ú

(· ≠ 2·1 ≠ ·2)

(20)

We have numerically simulated both Eq. (19) and Eq.

(20). As already indicated by Ref. [? ], Eq. (20) can ex-

hibit a behavior of blow-up in a finite time if ‹̂ . 2.5. We

have found that Eq. (19) is more robust in this regard,

with the blow up occurring only if ‹̂ . 0.15. Note that

in the derivation in our Letter, we explore the situation

in which the marginality implies ‹̂ ∫ 1. Therefore, the

breakdown of our QL theory only occurs for a region of

parameter space where it was not expected to be valid

anyway. Physically, small values of ‹̂ signal that the sys-

tem is not subject to enough stochasticity in order for a

di�usive description to be applicable (i.e., the resonant

particles remain in resonance for longer times and mem-

ory e�ects start being important).
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Figure 1. (a) Resonance function (Eqs. 6 and (8)) and (b)
”f = f ≠ F0 (Eqs. (9) and (10)) vs. normalized frequency
variable. The red and blue curves correspond to the Krook
and scattering cases, respectively. The full width at half max-
imum of the resonance function in part (a) is �� = 2‹K for
Krook and �� ≥= 2.58‹scatt for the scattering case. The sep-
aration between the two peaks of each curve for ”f in plot
(b) is �� = 2‹K/

Ô
3 for Krook and �� ≥= 4.95‹scatt for the

scattering case.

the vicinity of the resonance - its behavior far from the

resonance would then be determined by the boundary

conditions one imposes to Eq. (5) .

We now demonstrate that near the instability thresh-

old, the QL theory together with the calculated resonance

functions ((6) and (8)) replicates the same saturation lev-

els calculated by nonlinear theory [6, 7]. Let us start

with Eq. (5) for the Krook case. To leading order, it

can be written as ≠ fi
2

--Ê2
b

--2 ˆF0
ˆ�

ˆR
ˆ� = ‹K (F0 ≠ f), since

the marginality condition implies Êb π ‹K , ‹scatt. Di�er-

entiating with respect to �, then multiplying by R and

integrating over �, we get:

--Ê2
b

--2
⁄ Œ

≠Œ
Rˆ2R

ˆ�2 d� = ≠ 2‹K

fi ˆF0
ˆ�

⁄ Œ

≠Œ
R

3
ˆF0
ˆ�

≠ ˆf

ˆ�

4
d�

(11)

Note that, because R vanishes at ±Œ, integration by

parts of the left hand side leads to
s Œ

≠Œ R ˆ2R
ˆ�2 d� =

≠
s Œ

≠Œ
!

ˆR
ˆ�

"2
d� =

≠1
4fi‹3

K
(the last equality follows from

using the function given in Eq. (6)). Noting that the

initial growth rate (at t = 0) is defined as “L,0 =

fi
4

s Œ
≠Œ d�R ˆF0

ˆ� and the dynamical QL growth rate is

“L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� , it follows from Eq. (11) that

“L (t) = “L,0
1

1 ≠
--Ê2

b (t)
--2

/8‹4
K

2
. At saturation, i.e.,

when “L = “d, then |Êb,sat| = 8
1/4

(1 ≠ “d/“L,0)
1/4 ‹K ,

which is the same saturation level as the one predicted

by the kinetic time-delayed integral nonlinear equation

[6].

A slightly di�erent procedure can be employed for

the scattering case, for which the QL di�usion Eq. (5)

can be written to leading order as ≠ fi
2

--Ê2
b

--2 ˆF0
ˆ�

ˆR
ˆ� =

‹3
scatt

ˆ2(f≠F0)
ˆ�2 . Integrating over �, multiplying both sides

by R and integrating over �, one obtains

--Ê2
b

--2
⁄ Œ

≠Œ
R2d� =

2‹3
scatt

fi ˆF0
ˆ�

⁄ Œ

≠Œ
R

3
ˆF0
ˆ�

≠ ˆf

ˆ�

4
d�

(12)

The integration on the left hand side can be an-

alytically performed using Eq. (8), which gives

s Œ
≠Œ R2d� =

2
fi‹scatt

Ë
�

! 1
3
" ! 3

2
"1/3 1

6

È≠4
. Using the

definitions “L,0 =
fi
4

s Œ
≠Œ d�R ˆF0

ˆ� and “L (t) =

fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� , then one obtains from Eq. (12) that

“L (t) = “L,0
Ë
1 ≠

--Ê2
b (t)

--2
� (1/3) (3/2)

1/3 /
!
6‹4

scatt

"È
.

At saturation, when “L = “d, then |Êb,sat| ƒ
1.18 (1 ≠ “d/“L,0)

1/4 ‹scatt, which is the same as what fol-

lows from nonlinear kinetic theory [7] QED.

The limit ‹K,scatt/ (“L,0 ≠ “d) ∫ 1, when the de-

tailed time history becomes unimportant, allows for the

derivation of the analytical expression for the nonlin-

ear growth rate “NL (t) = “L,0
1

1 ≠ –
--Ê2

b (t)
--22

[17],

where – =
!
8‹4

K

"≠1
for the Krook case and – =

� (1/3) (3/2)
1/3 /

!
6‹4

scatt

"
for the scattering case. Com-

parison with the above expressions for the calculated QL

growth rates imply that they are equal to the nonlinear

growth rate at all times for both collisional cases.

In conclusion, it has been demonstrated that near

marginal stability, the systematic QL transport theory we

developed replicates the identical growth rates and satu-

ration levels as predicted by a significantly more complex

nonlinear kinetic theory based on solving a time delayed

integro-di�erential equation. The demonstration did not

rely on any assumption for the specific form of the dis-

tribution. We note that our demonstration assumed that

the overall system is governed by a QL equation that self-

consistently embodies collisional e�ects via a resonance

function that was previously determined from first princi-

ples ((6) and (8)). However, a QL theory, being a reduced

framework, does not contain all the relevant information

as to the detailed angle-resolved distribution function.

Hence, in work to be shown elsewhere, we have also de-

veloped an alternative formal approach, that produces

additional structure as part of the perturbed distribu-

tion function that is not described by the coarse-grained

When	decoherence is	strong,	the	distribution	function	has	
no	angle	dependence:

In	the	limit																																																	,	the	distribution	
relaxation	is	naturally	cast	as	a	diffusion	equation:	

With	the	spontaneously	emerged	collisional	resonance	
functions	(both	satisfy																													):
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given by W ¼W0ðAÞ þW1ðAÞ!1=3? as seen in Fig. 11. The fit of this
representation of df is shown in Fig. 13 for an amplitude of 2% 10&4,
for no collisions and for the maximum collision frequency used, !?
¼ 22Hz. The fit is best for these cases, and there is a minimum of
noise in the data when the collisions are either absent or strong
enough to smooth the distribution. Note that the center of df, P0, shifts
leftward (down the density gradient) with the increasing collision rate.
Clearly, the real situation is more complicated than what is given by
this simple form; undoubtedly, the actual Poincar!e particle resonance
with its original width is still somewhat present, although distorted by
the collisions, and produces modifications of the distribution function
near the resonance edges, where the collisions are unable to completely

smooth out. Nevertheless, this function captures the major shape of
the profile modification, in particular, when the collision rate is near
that corresponding to the mode saturation level. The behavior of the
maximum amplitude dm is not simple, dropping as a function of colli-
sion rate from the collisionless value to a minimum and then increas-
ing, shown in Fig. 14. Note that the maximum value of the collision
rate in this plot is very near the expected rate for saturation at this
amplitude and that the maximum value of df is more than half the
original maximum without collisions.

Although the collisions produce significant broadening of the res-
onance, and for a rapid collision rate, the maximum value of df is com-
parable to that with no collisions, the relative flattening of the profile
over the extended structure is not nearly as strong as that given by the
initial collisionless resonance. In Fig. 14, we see that the initial colli-
sionless flattening, equal to dm/W, is about 0.8, but this value drops to
about 0.1 as the resonance broadens with the increasing collision rate.
Interestingly, this behavior appears to be only weakly dependent on
the mode amplitude, at least within the limited range of values
considered.

VI. CONCLUSION
The resonance broadening of a high energy particle distribution

with an ideal MHD mode is examined using guiding center analysis,
including the effect of collisions. Collisional broadening of a resonance
is directly observed, with the flattening scaling as !1=3? and fit to the
analytical expression DX ¼ axb þ c!eff , with a ’ 4 and c ’ 3–4.
Although our investigation is limited to a specific resonance, the theo-
retical underpinning of the broadening expression indicates that this is
a universal result, applicable in general to other resonances, and useful
for models of the effect of resonances on high energy particle
distributions.

The visual identification of the resonance width can be challenging
when more than one peak appears in df. Numerical noise arising from
the stochastic layer that forms around the island and resonance asym-
metries also contribute to limiting the accuracy with which one can
extract the coefficient c. The results, however, show undoubtedly that
the collisional broadening can be comparable and even exceed the colli-
sionless broadening. Figure 11 shows that the scaling DX / !eff / !1=3?
proposed in Refs. 6 and 28 is consistent with the present results.

FIG. 13. Fit of df for an amplitude of 2% 10&4. Data with no collisions are in
black, with black triangles. Data with collisions are in red, with red squares. The
analytical fit given by Eq. (8) for each case is shown in green. The collision rate
was !? ¼ 22 Hz.

FIG. 14. Profile maxima dm for mode
amplitudes of 10&4 (squares) and
2% 10&4 (triangles) and flattening as a
function of collision rate.
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stability, as is the case in Ref. 6 and 10, the results above

are readily applicable upon the mapping of the variables

Ï and � into kx and v/k, where x is the spatial variable,

v is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)

ˆf

ˆt
+ �

ˆf

ˆÏ
+ Re

!
Ê

2
b e

iÏ
" ˆf

ˆ�
= C [f, F0] , (1)

where the form for the collisional operator C[f, F0] is

taken as either ‹K (F0 ≠ f), which are the creation

and annihilation terms of the Krook model [14] or

‹
3
scattˆ

2
(f ≠ F0) /ˆ�

2
, which is the di�usive scattering

operator [15], and ‹K and ‹scatt are the e�ective colli-

sion frequencies. Êb is the nonlinear trapping (bounce)

frequency at a given resonance, which is proportional

to the square root of the mode amplitude. F0 is the

distribution function in the absence of wave perturba-

tions. The distribution can be assumed of the form

f (Ï, �, t) = F0 (�) + f0 (�, t) +

Œq
n=1

!
fn (�, t) e
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"

with the ordering |F Õ
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---f Õ(1)
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--- ∫
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2

--- [16].

The prime denotes the derivative with respect to � while

the superscript denotes the order in the wave amplitude

(equivalently, in orders of Ê
2
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n

* (2)

where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
b /‹

2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê
2
b /‹

2
K ,

Eq. (2) gives

f1 =
Ê

2
b F

Õ
0

2 (i� + ‹K)
. (3)

Noting that the reality constraint implies f≠1 = f
ú
1 , to

second order in Ê
2
b /‹

2
K , (2) gives

ˆf0
ˆt

+
1

2
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Ê

2
b [f

Õ
1]

ú
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b f

Õ
1
"

= ≠‹Kf0. (4)

Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation

ˆf (�, t)

ˆt
≠ fi

2

ˆ

ˆ�

5--Ê2
b

--2 R (�)
ˆf (�, t)
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= C [f, F0] (5)

where, for the Krook case, R (�) is

RK(�) =
1

fi‹K (1 + �2/‹
2
K)

. (6)

A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
2
b /‹

2
scatt, we integrate

Eq. (2) along the characteristics, which gives

f1 =
iF

Õ
0Ê

2
b (t)

2‹scatt

⁄ 0

≠Œ
dse

i �
‹scatt

s
e

s3/3
. (7)

Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ

0| ∫ |f Õ
0|,

it is readily found that f (�, t) © F0 (�) + f0 (�, t) for

the scattering case also satisfies an equation of the form

of Eq. (5), with

Rscatt (�) =
1

fi‹scatt

⁄ Œ

0
ds cos

3
�s

‹scatt

4
e

≠s3/3
. (8)

The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
, and for the

growth rate, “L (t) =
fi
4

s Œ
≠Œ d�R ˆf(�,t)

ˆ� .

Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion

The	QL	plasma	system	automatically	replicates	the	
nonlinear	growth	rate	and	the	wave	saturation	
levels																																																								calculated	
from	fully	kinetic	theory	near	marginality,
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of a one-dimensional electrostatic bump-on-tail instabil-

ity, as is the case in Ref. 6 and 10, the results above are

readily applicable upon the mapping of the variables Ï

and � into kx and v/k, where x is the spatial variable, v

is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-

pansive publication rather than in this Letter)
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
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2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from

Êb(t) rather than from a delayed time integral over the

particle distribution’s time history.

Starting with the Krook case, to first order in Ê
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Eq. (2) gives
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Defining the angle-independent distribution as f (�, t) ©
F0 (�) + f0 (�, t) and noting that by construction

ˆF0/ˆt = 0 and |F Õ
0| ∫ |f Õ

0|, one then obtains from Eqs.

(3) and (4) that the relaxation of f (�, t) is governed by

the di�usion equation
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A somewhat similar procedure can be employed for the

scattering case. To first order in Ê
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Eq. (7) is then iterated in (2) to second order in

Ê
2
b /‹

2
scatt. Again, using that ˆF0/ˆt = 0 and |F Õ
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
s Œ

≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2
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/dt = 2 (“L (t) ≠ “d)
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, and for the

growth rate, “L (t) =
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Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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ity, as is the case in Ref. 6 and 10, the results above are

readily applicable upon the mapping of the variables Ï

and � into kx and v/k, where x is the spatial variable, v

is the velocity and k is the wave vector.

Resonant particles are described via a distribution

function f (Ï, �; t). t is time and � = 0 determines

the resonance condition. The kinetic equation for a sin-

gle resonance is (the generalization of the method for

treating multiple non-overlapping resonances is straight-

forward, and will be presented in a subsequent more ex-
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where the brackets on the right hand side denote either

Krook or scattering operators. Su�ciently close to the

linear instability threshold, with even moderate collision-

ality, ‹K,scatt/ (“L,0 ≠ “d) ∫ 1 is satisfied (“L,0 is the

mode linear growth rate at t = 0 and “d is the back-

ground damping rate). In this case, the detailed time

history is not essential for the description of the system’s

dynamics [17]. Then, to lowest order in Ê
2
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2
K,scatt one

can disregard the time derivative in (2). Therefore, the

principal time dependency contribution to fn comes from
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The resonance functions (6) and (8) are plotted in Fig.

1(a). The property
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≠Œ F(�)d� = 1, expected for func-

tions that replace a delta function, is automatically satis-

fied by both forms of the resonance function. For a self-

consistent description, the QL di�usion Eq. (5) must

be solved simultaneously with the Eq. for amplitude

evolution, d
--Ê2

b

--2
/dt = 2 (“L (t) ≠ “d)

--Ê2
b

--2
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Interestingly, functions similar to (6) and (8) appear in

the context of broadening of atomic emission lines - their

equivalent are Eq. 12 of [18] and Eq. 5.68 (with p = 1)

of [19], respectively. Eq. (8) has the same form of the

function calculated by Dupree [20] in a di�erent context,

namely in the study of strong turbulence theory, where

a dense spectrum of fluctuations di�use particles away

from their free-streaming trajectories (see Ref. [21] for

a review covering broadening theories in strong turbu-

lence). In that case, a renormalized average propagator

was introduced and the cubic term in the argument of

the exponential is proportional to a collisionless di�usion

coe�cient.

A concern might arise about the physical significance

of a resonance function that is negative in a part of its

domain, as is shown in Fig. 1(a) for the function (8). We

note that for the problem treated in the present work,

the collisional di�usion ensures that the overall di�usion
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/
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"
for the scattering case. Com-

parison with the above expressions for the calculated QL

growth rates imply that they are equal to the nonlinear

growth rate at all times for both collisional cases.

In conclusion, we have constructed a QL transport the-

ory from first principles that is able to account for the

excitation of an isolated resonance. The conventional QL

theory requires resonance overlapping to be obeyed, via

the Chirikov criterion Chirikov [23]. Near marginal sta-

bility, the stochasticity introduced by collisions or back-

ground turbulence ensures that the particle orbital mo-

tion loses coherence in order to justify a di�usive ap-

proach. Besides, in the present work, the shape of the

resonance function emerges naturally in the calculation

which, therefore, removes a major arbitrariness of the

framework proposed in Ref. 10, and does so by means

of a systematic derivation that does not require any as-

sumption other than near marginality.

It has been demonstrated that near marginal stability,

the systematic QL theory we developed replicates the

identical growth rates and saturation levels as predicted

by a significantly more complex nonlinear kinetic theory

based on solving a time delayed integro-di�erential equa-

tion. The demonstration did not rely on any assumption

for the specific form of the distribution. We note that

our demonstration assumed that the overall system is

governed by a QL equation that self-consistently embod-

ies collisional e�ects via a resonance function that was

previously determined from first principles ((6) and (8)).

However, a QL theory, being a reduced framework, does

not contain all the relevant information as to the detailed

angle-resolved distribution function. Hence, in work to

be shown elsewhere, we have also developed an alterna-

tive formal approach, that produces additional structure

as part of the perturbed distribution function that is not

described by the coarse-grained QL theory. However, we

have shown that this additional structure does not alter

the nonlinear corrections to the field amplitude, predicted

by the QL theory we report here. A description of the

results of this more general approach will be given in a

later more detailed paper.
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highest maximum not immediately arising, a surprising
result which we will discuss below.
When g ; gL 2 gd ø gL one can expect to develop

an analysis based on the closeness to marginal stability.
For the sink that balances a constant source of particles
we choose a particle annihilation model with n the annihi-
lation rate. We will assume n , g and that the relevant
nonlinear time scale t , 1yg is shorter than v21

B , the
characteristic time it takes a trapped particle to complete
a period. Hence we develop a perturbative analysis based
on small deviations of the particles from their unperturbed
orbits; formally we generate an expansion in the small pa-
rameter svBtd2. Below we show that this procedure leads
to the prediction of a steady state mode amplitude given
by vB ≠ 81y4nsgygLd1y4 which satisfies our assumption
that vBt is small. This steady solution is only stable for
n . ncr ; 4.38g. For smaller n values the amplitude is
found to oscillate in time (close to the steady state one if
ncr 2 n ø ncr). However, when n is sufficiently small,
it is found from numerical integration and verified with a
self-similar solution that the solution of the perturbatively
derived equations blows up in a finite time. In reality
this singular behavior leads to a level where the pertur-
bation method fails. Saturation is then due to the natural
saturation mechanism, where the distribution function flat-
tens about the separatrix when vB rises to the level that
it is ,g.
To begin the analysis we use a perturbative proce-

dure to solve the equation for the distribution func-
tion Fsx, y, td in the presence of an electric field, E ≠
Êstd cosskx 2 vt 1 ad,

≠F
≠t

1 y
≠F
≠x

1
e
m

Êstd3

cosskx 2 vt 1 ad
≠F
≠y

1 nF ≠ Ssyd , (1)

where e and m are the particle charge and mass, respec-
tively, a is a phase which can be shown to remain con-
stant in our problem, and Ssyd the source of particles. We
will write F as a Fourier series

F ≠ F0 1 f0 1
X̀

n≠1
f fn expsincd 1 c.c.g , (2)

where F0 ≠ Ssydyn is the equilibrium distribution when
Ê ≠ 0 and c ; kx 2 vt 1 a.
The evolution equation for the wave amplitude is de-

termined by the condition that the time rate of change of
wave energy ≠WEy≠t is equal to the negative of the power
dissipated into the background plasma 22gdWE plus the
power P the energetic particles transfer to the waves

P 7 2
ev

k

Z
dx dy Esx, tdFsx, y, td .

Note that for plasma waves the wave energy takes

into account field energy and kinetic energy due to
oscillations at the plasma frequency and is given by
WE ≠

R
dx E2sx, tdy4p where the x integration is over a

wavelength. Now using these relations, we obtain

≠Êstd
≠t

≠ 2
4pev

k
Re

Z
f1 dy 2 gdÊstd . (3)

Thus we need to determine
R

dy f1 in terms of Êstd from
Eq. (1) and substitute it into Eq. (3).
We assume that F can be expressed as a power series

in Estd and we can truncate terms at sufficiently high n
(we neglect n $ 3). With u ≠ ky, the equations for fn
sn ≠ 0, 1, 2d are

≠f0

≠t
1 nf0 ≠ 2

v2
B

2
≠s f1 1 fp

1 d
≠u

,

≠f1

≠t
1 iuf1 1 nf1 ≠ 2

v2
B

2
≠sF0 1 f0 1 f2d

≠u
, (4)

≠f2

≠t
1 2iuf2 1 nf2 ≠ 2

v2
B

2
≠f1

≠u
1 O sv2

Bf3d ,

where v2
B ; ekÊstdym. These equations are integrated

iteratively, assuming F0 ¿ f1 ¿ f2, f0 with the initial
condition F ≠ F0. It turns out that f2 does not contribute
to the final result. By performing the time integration
of Eqs. (4) we find

R
dy f1sy, td that reduces Eq. (3) to

the form

d
dt

v2
B ≠ sgL 2 gddv2

Bstd 2
gL

2

Z t

ty2
dt0 st 2 t0d2v2

Bst0d

3
Z t0

t2t0
dt1 expf2ns2t 2 t0 2 t1dg

3 v2
Bst1dv2

Bst0 1 t1 2 td , (5)

where gL ≠ 2p2se2vymk2d≠F0svykdy≠y. We rescale
our variables with the transformations t ≠ sgL 2 gddt,
A ≠ fv2

BysgL 2 gdd2g fgLysgL 2 gddg1y2, n̂ ≠ nysgL 2
gdd. Equation (5) can then be written as

dA
dt

≠ Astd 2
1
2

Z ty2

0
dz z2Ast 2 zd

3
Z t22z

0
dx expf2n̂s2z 1 xdg

3 Ast 2 z 2 xdAst 2 2z 2 xd . (6)

Note that n̂ is the only parameter appearing in Eq. (6).
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highest maximum not immediately arising, a surprising
result which we will discuss below.
When g ; gL 2 gd ø gL one can expect to develop

an analysis based on the closeness to marginal stability.
For the sink that balances a constant source of particles
we choose a particle annihilation model with n the annihi-
lation rate. We will assume n , g and that the relevant
nonlinear time scale t , 1yg is shorter than v21

B , the
characteristic time it takes a trapped particle to complete
a period. Hence we develop a perturbative analysis based
on small deviations of the particles from their unperturbed
orbits; formally we generate an expansion in the small pa-
rameter svBtd2. Below we show that this procedure leads
to the prediction of a steady state mode amplitude given
by vB ≠ 81y4nsgygLd1y4 which satisfies our assumption
that vBt is small. This steady solution is only stable for
n . ncr ; 4.38g. For smaller n values the amplitude is
found to oscillate in time (close to the steady state one if
ncr 2 n ø ncr). However, when n is sufficiently small,
it is found from numerical integration and verified with a
self-similar solution that the solution of the perturbatively
derived equations blows up in a finite time. In reality
this singular behavior leads to a level where the pertur-
bation method fails. Saturation is then due to the natural
saturation mechanism, where the distribution function flat-
tens about the separatrix when vB rises to the level that
it is ,g.
To begin the analysis we use a perturbative proce-
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where e and m are the particle charge and mass, respec-
tively, a is a phase which can be shown to remain con-
stant in our problem, and Ssyd the source of particles. We
will write F as a Fourier series

F ≠ F0 1 f0 1
X̀

n≠1
f fn expsincd 1 c.c.g , (2)

where F0 ≠ Ssydyn is the equilibrium distribution when
Ê ≠ 0 and c ; kx 2 vt 1 a.
The evolution equation for the wave amplitude is de-

termined by the condition that the time rate of change of
wave energy ≠WEy≠t is equal to the negative of the power
dissipated into the background plasma 22gdWE plus the
power P the energetic particles transfer to the waves
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Note that for plasma waves the wave energy takes

into account field energy and kinetic energy due to
oscillations at the plasma frequency and is given by
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dx E2sx, tdy4p where the x integration is over a

wavelength. Now using these relations, we obtain
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Thus we need to determine
R

dy f1 in terms of Êstd from
Eq. (1) and substitute it into Eq. (3).
We assume that F can be expressed as a power series

in Estd and we can truncate terms at sufficiently high n
(we neglect n $ 3). With u ≠ ky, the equations for fn
sn ≠ 0, 1, 2d are
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where v2
B ; ekÊstdym. These equations are integrated

iteratively, assuming F0 ¿ f1 ¿ f2, f0 with the initial
condition F ≠ F0. It turns out that f2 does not contribute
to the final result. By performing the time integration
of Eqs. (4) we find

R
dy f1sy, td that reduces Eq. (3) to

the form
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where gL ≠ 2p2se2vymk2d≠F0svykdy≠y. We rescale
our variables with the transformations t ≠ sgL 2 gddt,
A ≠ fv2
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gdd. Equation (5) can then be written as
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Note that n̂ is the only parameter appearing in Eq. (6).
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bation method fails. Saturation is then due to the natural
saturation mechanism, where the distribution function flat-
tens about the separatrix when vB rises to the level that
it is ,g.
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Êstd3

cosskx 2 vt 1 ad
≠F
≠y

1 nF ≠ Ssyd , (1)

where e and m are the particle charge and mass, respec-
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will write F as a Fourier series
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where F0 ≠ Ssydyn is the equilibrium distribution when
Ê ≠ 0 and c ; kx 2 vt 1 a.
The evolution equation for the wave amplitude is de-

termined by the condition that the time rate of change of
wave energy ≠WEy≠t is equal to the negative of the power
dissipated into the background plasma 22gdWE plus the
power P the energetic particles transfer to the waves
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Eq. (1) and substitute it into Eq. (3).
We assume that F can be expressed as a power series

in Estd and we can truncate terms at sufficiently high n
(we neglect n $ 3). With u ≠ ky, the equations for fn
sn ≠ 0, 1, 2d are

≠f0

≠t
1 nf0 ≠ 2

v2
B

2
≠s f1 1 fp

1 d
≠u

,

≠f1

≠t
1 iuf1 1 nf1 ≠ 2

v2
B

2
≠sF0 1 f0 1 f2d

≠u
, (4)

≠f2

≠t
1 2iuf2 1 nf2 ≠ 2

v2
B

2
≠f1

≠u
1 O sv2

Bf3d ,

where v2
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tinfl =
1
2
log

[
1 − bA2(0)

2bA2(0)

]
 (5)

and corresponds to a characteristic amplitude of A(tinfl) =  
Asat/

√
3. The in!ection is indicated by the dashed lines in 

"gure 1.
In "gure  1, we compare the solution for ν̂eff ! 1, equa-

tion  (3), with the full time-delayed cubic equation, equa-
tion (1), for different values of ν̂eff . The difference between 
numerical results of equation  (1) and the analytic solution 
(3) can be understood in terms of the high diffusivity approx-
imation. The extrinsic stochasticity coming from ν̂eff  acts to 
destroy phase-space correlations and to produce entropy. The 
lack of coherence in the orbital motion means that resonant 
particles very easily forget their phases and decorrelate from 
the resonance, i.e. they transition between the trapped and the 
de-trapped regimes within a characteristic time much smaller 
than the bounce time. The loss of phase information implied 
by the approximation ν̂eff ! 1 translates into the system’s ina-
bility to resolve the "ne oscillations predicted by equation (1). 
Interestingly, however, equation (3) can still describe the gen-
eral trend of a wave quasi-steady evolution.

We observe that equation  (3) describes the trace of the 
wave amplitude reasonably well for ν̂eff ! 2, which is when 
the full cubic equation admits a steady solution [6, 16]. The 
assumption of high ν̂eff  used to derive the analytical solution 
therefore turns out to be less restrictive than anticipated when 
one is only interested in the essence of the amplitude evo-
lution. For getting the general trend, in fact, ν̂eff  simply needs 
to be high enough to ensure steady saturation (i.e. to prevent 
the emergence of wave chirping as well as other higher-
order nonlinear bifurcations). We note that close to marginal 

stability, simulations usually can get very costly as it takes 
longer to saturate, making equation (3) particularly useful in 
that regime. Regarding comparison with experiments, we note 
that in order to pull out the mode signal from the background 
noise, a Fourier time window has to be employed, which very 
much limits the capability of experimentally resolving the 
very "ne oscillations (e.g., in "gure 1a). Therefore the fact 
that equation  (3) does not reproduce the oscillations around 
the mean amplitude is not too stringent when one has in 
mind experimental applications. In any event, the assumption 
ν̂eff ! 1 falls into a typical tokamak operation scenario, as 
previously discussed.

The existence of a steady solution is always allowed in 
equation (2) since the linear term can in principle balance the 
cubic term. The stability of solution (3) can be addressed via 
eigenvalue analysis by substituting in equation (2) a perturbed 
solution in the form Asat + δAe(λR+iλI)t, with λR,λI ∈ R. The 
result is λR = −2 and λI = 0, which means that the satur-
ated solution is intrinsically stable: any linear perturbation 
will exponentially asymptote to the saturation level, without 
the possibility of oscillations, which are suppressed by strong 
scattering processes.

We note that if the collisional scattering kernel of equa-
tion  (1), e−ν̂3

effz
2(2z/3+y), were substituted by a Krook-type 

kernel e−ν̂K(2z+y) (ν̂K is the Krook collisional frequency 
normalized with γL − γd), then solutions of the same type 
of equations  (3)–(5) are admitted, with the transformation 
b !→

∫ dΓH
8ν̂4

K
. For the Krook case, the saturation level implied 

by the analytical solution is Asat = 2
√

2ν̂2
K, in agreement with 

[5].
Equations (3)–(5) can be used as a veri"cation for simula-

tions for the situation in which the amplitude of a margin-
ally unstable wave evolves towards a quasi-steady saturation. 
Another possibility to explore the analytical solution (3) is 
to study its implications on the distribution function folding 
within the cubic equation framework, as recently numerically 
demonstrated [20]. A high scattering frequency used in this 
work destroys phase-space correlations and therefore pre-
vents the emergence of self-organized scenarios, such as wave 
chirping and avalanching. Quasilinear theory employs a simi-
lar reasoning since it neglects the ballistic fast-oscillating term 
in its derivation, thereby also not capturing fully nonlinear 
wave behavior. An example of the comparison between equa-
tion (3) and the RBQ code [19] is shown in "gure 2, which 
show fair agreement for regions of parameters where RBQ 
does not admit intermittent solutions.

If collisionality is moderate, we note that an amplitude 
overshoot occurs following the linear phase, as can be seen 
from "gure  1(a). This can lead to instantaneous wide reso-
nance islands (the resonance width is roughly proportional to 
ωb [21] and therefore proportional to 

√
A). The overshoot can 

be several times the saturated amplitude, as shown in [22]. 
This may lead to instantaneous overlap of distinct resonances 
and invalidate the analysis within the cubic equation frame-
work. Therefore, for purposes of code veri"cation, the expres-
sion (3) best applies when collisions are high enough to 
ensure a near-monotonic saturation, in addition to the near 
threshold, isolated regime. As a "nal remark, we point out that 

Figure 1. Mode amplitude A versus time t (normalized with 
γL − γd) for (a) ν̂eff = 3, (b) ν̂eff = 5, (c) ν̂eff = 20 and (d) 
ν̂eff = 100. In green is the numerical solution of the full cubic 
equation (1) and in black is the analytical solution (3). The dashed 
lines indicate the characteristic in!ection time for (3), given by 
equation (5), which can vary depending on the choice for A(0) but 
always happens at Asat/

√
3.

Nucl. Fusion 59 (2019) 044003

(Duarte	&	Gorelenkov,	Nucl.	Fusion	2019)

Amplitude	vs	time
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Duarte,	et	al,	“Shifting	and	splitting	of	resonance	lines	due	to	dynamical	friction	in	plasma”, (submitted,	2021)

• Agreement	between	quasilinear	and	nonlinear	theories	on	the	resonant	particle	redistribution	

• Previously	unrecognized	universality	of	resonance	behavior	present	in	kinetic	plasma	physics



Drag	breaks	the	anti-symmetry	of	the	relaxed	
distribution	around	a	resonance
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• The	amount	of	shifting	and	splitting	is	dictated	
by	the	effective	drag	to	scattering	ratio:

• In	conventional	tokamaks,	the	ratio	is	0.1-0.5.
• Spherical	tokamaks,	the	ratio	is	~1.
• Basic	plasma	physics	experiments	(LAPD,	

TORPEX,…),	the ratio is ~10.
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Any	small	amount	of	drag	breaks	structural	constraints	of	the	system	and	allows	for	the	loss	of	
resonant	particles	via	new	channels	->	drag	needs	to	be	included	for	quantitative	predictions



Summary
• A	systematic	QL	theory	has	been	derived	from	first	principles	near	an	instability	threshold,	where	the	collisional	

resonance	functions	emerge	spontaneously:
o Scattering	broadens	the	resonance	function
o Drag	leads	to	shifting	and	splitting	of	the	resonance	function

• The	derivation	indicates	that	QL	theory	can	be	applicable	to	a	single	discrete	resonance	(with	no	overlap),	
provided	that	stochasticity	is	large	enough,	as	well	as	the	usual	overlapping	regime

• An	arbitrariness	of	collisional	QL	modeling	(the	shape	of	the	resonance	functions)	has	been	removed

• The	QL	system	(with	the	calculated	broadening	functions)	systematically	recovers	the	mode	saturation	levels	for	
near-threshold	plasmas	previously	calculated	from	nonlinear	kinetic	theory

• Resonance	functions	have	been	implemented	into	the	Resonance	Broadening	Quasilinear	(RBQ)	code

The	use	of	the	obtained	resonance	functions	implies	that	fundamental	features	of	nonlinear	theory	
are	automatically	built	into	broadened	QL	theory	

Duarte,	et	al,	“Collisional	resonance	function	in	discrete-resonance	quasilinear	plasma	systems”, Phys.	Plasmas	26,	120701	(2019)
Duarte,	et	al,	“Shifting	and	splitting	of	resonance	lines	due	to	dynamical	friction	in	plasma”, (submitted,	2021)
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